skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kalavri, Vasiliki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The SysteMPC workshop brings together cryptographers and systems researchers to discuss advances in overcom- ing practical challenges of using MPC in the wild. Topics of interest include cryptography and systems co-design, pro- gramming abstractions, modularity of cryptographic soft- ware, hardware acceleration, experimentation, and integra- tion with the existing ecosystem. In this short report, we summarize the inaugural edition of the workshop, which was held on July 10, 2025 at Boston University. 
    more » « less
    Free, publicly-accessible full text available September 8, 2026
  2. Free, publicly-accessible full text available June 22, 2026
  3. Free, publicly-accessible full text available July 10, 2026
  4. We present Secrecy, a system for privacy-preserving collaborative analytics as a service. Secrecy allows multiple data holders to contribute their data towards a joint analysis in the cloud, while keeping the data siloed even from the cloud providers. At the same time, it enables cloud providers to offer their services to clients who would have otherwise refused to perform a computation altogether or insisted that it be done on private infrastructure. Secrecy ensures no information leakage and provides provable security guarantees by employing cryptographically secure Multi-Party Computation (MPC). In Secrecy we take a novel approach to optimizing MPC execution by co-designing multiple layers of the system stack and exposing the MPC costs to the query engine. To achieve practical performance, Secrecy applies physical optimizations that amortize the inherent MPC overheads along with logical optimizations that dramatically reduce the computation, communication, and space requirements during query execution. Our multi-cloud experiments demonstrate that Secrecy improves query performance by over 1000x compared to existing approaches and computes complex analytics on millions of data records with modest use of resources. 
    more » « less
  5. null (Ed.)